Presenting new drugs and procedures that have been very helpful and leading to recovery (from laser, to electromagnetic resonance, to hyperbaric oxygen (chambers that do not cost and arm and a leg).
Presenting new drugs and procedures that have been very helpful and leading to recovery (from laser, to electromagnetic resonance, to hyperbaric oxygen (chambers that do not cost and arm and a leg).
Most (80%) of disc herniation that lead to acute paralysis occur at T11-L3, then L4-S3,. The Area most protected T1-T10, by the dorsal longitudinal ligament. Second most common is C2-C6 but cases have been reported at C7-T10 but rarely.
Gotten with the phone call coming into the practice by the owner or person trying to help the acutely paralyzed dog at the scene. IF the paralysis was due to trauma instruct the responders/owner to transport on a flat solid surface if at all possible, right from where the pet is laying, keeping them in one plane in horizontal lateral recumbency. Duck tape the head and pelvic area and several other points between. Rarely breathing may stop if the herniation of disc or injury has occurred at the cervical-vertebral region. Then in these cases mouth to nose (snout) (MS ) ventilation (rescue breathing) is life saving and must be done immediately and continued en route. Some years ago I had a small poodle fall down some stairs once and stopped breathing soon after it came to rest at the bottom of the stairs. The owner was a physician and he began mouth to snout ventilations approx 8-10 times a minute and he had a neighbor drive the dog and him, continuing to perform the MS rescue breathing. The dog arrived with profound spastic paralysis but with deep-pain sensation. Following iv placement, anesthesia, hand bagging to get the radiographs and do a myelogram that should a ruptured C4-5 space and cord compression. She was placed on an anesthetic ventilator, taken to surgery and a slot and ruptured disc removal was accomplished. The remained on a ICU ventilator (old Puratian-Bennett) for 5 days and began bucking the ventilator more all the time. The dog was able to be off the ventilator shortly after that she made a complete neurologic recovery.
Should be done to determine. location, degree of problem and prognosis, and provide a baseline to log progress should treatment be performed. The neuro exam will involve the following:
1. gate (not done in the paralyzed patient)
2. Postural reactions (proprioceptive positioning = sensory & motor).
3. paw recognition; assesses ascending pathways (dorsal spinocerebellar tract)
4. surface receptor, periph & spinal N, brain stem, cerebellum, cerebral cortex
5. assesses descending upper motor neuron pathways (cortico and rubro [opposite side] and reticulospinal pons/medulla area [same side] tracts.
6. returning cord white matter (lateral and ventral funiculi)
7. assesses reflex pathway and muscle tone (passive manipulation of each limb = normal, hypo, hypertonia)
8. spinal reflexes: (hyporeflexia= lower motor neuron, hyper reflexia =upper)
extensor thrust Femoral N + L4-5 segments (hyperextensor thrust = upper)
patellar reflexes ( Femoral N + L4-5 segment (hyperpatella reflex = upper)
biceps and triceps reflexes Radial N + C7-T2 segments
ON ADMISSION if the animal is not immobilized and history reveals possible acute intervertebral disc herniation – or acute back injury, teat all of these as if they all had just fractured and place the animal in lateral recumbency and IMMOBILIZATION CONTINUE using cardboard, tape, duct tape, similar to how it is described lately. Working with Cardboard and Tape, MANUFACTURE THE SPINE BOARD. It stabilizes the spine, Stabilizes clots, Helps decrease pain. Allows radiographs as x-ray beams to go through it.
PERFORM A HISTORY, PHYSICAL EXAM, NEUROLOGICAL EXAM AND SCORE INJURY beginning with level of consciousness. Caution is advised with cases that also have other injuries, are in shock and in cases where the acute paralysis has just occurred or is very recent (hours) as some spinal cord shock, contusion, and decreases in spinal cord blood flow due to vasospasm can provide injury scores that are going to be worse and location indications that may change over the course of the next few hours.
o Hyper-patella reflex = lesion cranial to L3-4 segment
o Deep pain response = patient responds w/ recognition
o Hypo-patella reflex = lesion involving the peripheral N (Femoral) and/or the spinal segments (L3-5, L4-L5 commonly)
o (0 = absent, +1 = hypo-reflexia)
Grade 0: normal
Bjorn M: Cervical and Thoracolumbar Disc Disease: Diagnosis and Treatment. Proceedings World Small Animal Veterinary Assoc., 30 th Congress, Mexico City, Mexico, May11-14, 2005.
o Lubra Plate (Securose) - Thoracic – Lumbar; Bent Steinmen Pin Wired to Dorsal Spines
o Bone Plate & Screws to Vertebral Body ; Pins in Vertebral Bodies Fused w/ PMM
o Vertebral Bodies Fused w/ Bone Graft
o V tent system for relatively stable fracture ; Fiberglass and Body Bandage - head to pelvis
o Aluminum Rods in soft bulky dressing; Limited "Cervical Collar"; Supportive Dressing
Seven mechanisms of injury: 1.anatomic related to amount of "cord & vessel* room" 2. concussion seen with rapid "shock wave" force; 3. compression amount and its persistence – progressive ; 4. hypoxia - ischemia – initial and then secondary edema; 5. Inflammation – secondary to poor DO2:VO2 cytokines; 6. Microcirculation impairment – endothel-reflow affected; Reperfusion injury – related to ROS, NO, electrolytes; 7. Electromagnetic (ion channel) changes – electron quanta
o Ultimate Treatment Goal: Normalize DO2 to cord -best as possible EARLY ... w/in minutes ideally
o DO2 sc = Effective SC Cord Blood Flow X [O2]
o Boyles Law =pAO2 proportional to FiO2 and the ...PaO2 proportional to PAO2
o through alveoli- capillary; through capillary – interstitial; through interstitial – cell membrane
o DO2cord proportional to Hb O2 Sat. O2 Sat proportional to pO2 and Q cord
o [O2] Oxygen Content = 1.34 x Hb x % saturation + 0.003 x PaO2 (mmHg) Need Hb and high SpO2
o Boyles Law pAO2 proportional to FiO2 ... PaO2 to PAO2
o Pcord O2 proportional to PaO2 influenced by atmospheric pressure: Pcord of 90 mm + surrounding Patmospheric – increasing PO2 is good HYPERBARIC (>760 mmHg or 1 ATA)
o Low pressure 1.3 ATA =1080 mmHg
o High pressure 2 ATA = 1500 mmHg .... ? Amount needed
o As there seems to be even beneficial effects at 1.3 x 300 = 400
"Jet" Young DSH w/ head and neck injury: received jet blow by, hood "Baggy" O2
o Most Important
• Prevent further anatomic injury - immobilize
• Prevent hypoxia - maintain cord blood flow & pO2
• (supplemental oxygen, hyperbaric oxygen, HBOC)
o Next Important - Prevent & treat cord compression
• Document if gross compression - myelogram
• (Helical CT without & with contrast, MRI) -> Surgery
• Add cooling (systemic and local)
o Third - Prevent & treat secondary cord edema -
• Hypertonic saline, mannitol, colloids,
• methylprednisolone., dexamethasone, cautious fluids, etc.
1. Lower CO (shock)
2. Poorer local circulation
3. Especially gray matter - has 6 X
4. demand as white matter
5. 3. Lower Hb (blood loss)
6. 4. Cellular -interstitial edema
7. ("oxygen jumping distance"
8. increased) especially with crystalloids (LRS...also contains Ca++ ion = arteriolar constriction (less flow) + BAX proteins = more mitochondrial injury; use Mg++
1. Provides a Hb based molecule w/ 80% same O2 (has 13 g/dl Hg; Cl ion, not 2,3 DPG dependent)
2. Provides a more rapid uptake of oxygen in the pulmonary capillary (facilitates oxygen "on loading")
3. Provides a more rapid release of oxygen at the tissue level (oxygen dissociation curve shifted to the right - and facilitates oxygen "off loading")
4. Is a "transporter" or "oxygen bridge" from RBC surface to endothelial surface) BJ Med Online
o Hypothermia – IV 10C Plasmalyte (Mg ++).. 32 C
o Polyethylene glycol – plugs holes cell membranes
o poloxamer 188, restores impulses. 300 mg/kg
o Hypertonic Saline -decreases edema 3-4 ml/kg
o Mannitol - O2 radical scavenger 0.5 G/kg
o Pentoxifylline - RBC improved deformation, 2 mg/kg
o Nicotinic Acid other Bs as a O2 radical scavenger 10 mg/kg
o Acetylcysteine - improved neuronal survival 140 mg/kg
o Lidocaine – membrane stabilization 50mcg/kg/min
o Methylprednisolone - membrane stabilization 30 mg/kg
o Resveratol, red wine polyphenol, scavenges ROS 10 mg/kg
o Imposed oscillating electrical field 500mcV (implanted)
4 year old DSH - GSW 7mm pellet L2 canal
guided by wound & Rads, Durotomy pellet was in canal - through dura - removed pellet - irrigated - SIS covered- HBOTx - mannitol, MPS - external support (fiberglass) = recovered
3 year old jack russell terrier – HBT
Fx L2-L3 compression on myelogram, Hemilaminectomy – cool saline, durotomy, unstable = vertebral body & dorsal spinous plates + HBOC + MPS + hypertonic saline + HBOTx bid, x 4 days...saw improvement
1. Borgens, R B et al: An imposed oscillating electric field improves the recovery of function in neurologically complete paraplegic dogs. J Neurotrauma 16 (7), 639, 1999.
2. Borgens RB, Shi, R: Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. FASEB J 14, 27-35, 2000.
3. Dimar JR, et al: The role of directly applied hypothermia in spinal cord injury. Spine 25 (18): 2294-2302, 2000.
4. Ha KY, Kim YH: Neuroprotective effect of moderate epidural hypothermia after spinal cord injury in rats. Spine 33(19): 2059-2065, 2008.
5. Laverty PH, et al: A preliminary study of intravenous surfactants in paraplegic dogs: polymer therapy in canine clinical SCI: J Neurotrauma 21(12):1761-1777, 2004.
6. Meij B: Cervical and thoracolumbar disc disease: diagnosis and treatment. Proceedings 30th World Congress of the World Small Animal Veterinary Association, May, 2005.
7. Rossignol DA: The use of hyperbaric oxygen therapy in autism. In Hyperbaric Oxygen for Neurological Disorders, Ed John Zhang, Best Publishing Co.,Flagstaff, AZ 2008.
8. Borgens RB: New horizons in the treatment of spinal cord injury. Applied Spinal Cord Injury Research Newsletter, www.vetpurdue.edu/cpr/sci.html, 2003.
9. Blevins WE: Transosseous vertebral venography: a diagnostic aid in lumbosacryl disease. Vet Radiology & Ultrasound 21(2):50-54, 2005.
10. De Lahunta, Alexander: Veterinary Neuroanatomy and Clinical Neurology. WB Saunders, Philadelphia, 1977 (Cornell University)
11. Dewey, Curtis W, Hoffman AG, Rudowsky C: A Practical Guide to Canine and Feline Neurology, Blackwell Publishing, 2007
12. Murakami, N, et al: Hyperbaric oxygen therapy given 30 minutes after spinal cord ischemia attenuates selective motor neuron death in rabbits. Crit Care Med 29(4):814-818, 2001
13. Saganova K, et al: Limited minocycline neuroprotection after balloon-compression spinal cord injury in the rat. Neurosci Lett. 433(3):246-249, 2008
14. James P: High-pressure chambers could prevent paralysis after spinal cord injury. Science News. May 14, 1998.
15. Asamoto, S et al: Hyperbaric oxygen (HBO) therapy for acute traumatic cervical spinal cord injury. Spinal Cord 38(9): 538-540, 2000.
16. Gomez M et al: Effects of artificially induced spinal cord compression on canine cervical internal vertebral venous plexus: comparative evaluation of computed tomographic venography and digital subtraction venography. Arch Med Vet 40: 161-168, 2008
17. Hayashi AM, et al: Electro-acupuncture and Chinese herbs for treatment of cervical intervertebral disk disease in a dog. J Vet Sci. 8(1):95-98, 2007
18. Gibbons SE, et al: The value of oblique verses ventrodorsal myelographic views for lesion lateralization in canine thoracolumbar disc disease. J Small Anim Pract 47(11):658-662, 2006
19. Tartarelli CL, Boroni M, Borghi M: Thoracolumbar disc extrusion associated with extensive epidural hemorrhage: a retrospective study of 23 dogs. J Small Anim Pract 46(10):485-490, 2005
20. Sekiguchi M, Konno S, Kikuchi S: The effects of a 5-HT2A receptor antagonist on blood flow in lumbar disc herniation: application of nucleus pulposus in a canine model. Eur Spine J: 17(2): 307-313, 2008.
21. Kinzel S, et al: Partial percutaneous discectomy for treatment of thoracolumbar disc protrusion: retrospective study in 331 dogs. J Small Anim Pract 46(10): 479-784, 2005.
22. Forterre F, Konar M, Spreng D, Jaggy A, Lang J: Influence of intervertebral disc fenestration at the herniation site in association with hemilaminectomy on recurrence in chondrodystrophic dogs with thoracolumbar disc disease: a prospective MRI study. Vet Surg. 37(4):399-405, 2008. (6 times more re-occurrence in those w/o fenestration)
23. Jensen VF, et al: Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds. J Am Vet Med Assoc. 233(7):1090-5, 2008. Disk calcification at 2 years of age was a significant predictor of clinical disk herniation with an odds ration of 1.42 per calcified disk., involving all the disks that were calcified not just those disks between T10 and L3. Recommend having a fenestration completed if 3 + seen.
24. Janssens LA: Acupuncture for the treatment of thoracolumbar and cervical disc disease in the dog. Probl Vet Med. 4(1):107-116. 1992
25. Baltzer WI, et al: Randomized, blinded, placebo-controlled clinical trial of N-acetylcysteine in dogs with spinal cord trauma from acute intervertebral disc disease. Spine 33(13):1397-1402, 2008. N-acetylcysteine is a ROS scavenger. All 70 dogs in this study had hemilaminectomy; with ½ receiving N-acetylcysteine before surgery. There was no difference in recovery despite experimental studies on induced spinal cord injury that revealed improvement.
Podcast CE: A Surgeon’s Perspective on Current Trends for the Management of Osteoarthritis, Part 1
May 17th 2024David L. Dycus, DVM, MS, CCRP, DACVS joins Adam Christman, DVM, MBA, to discuss a proactive approach to the diagnosis of osteoarthritis and the best tools for general practice.
Listen