The most common causes of voiding disorders in cats include: obstruction with urethral plug, urolith, or blood clot; urethrospasm resulting in functional obstruction (usually post blockage); bladder dysfunction (detrusor atony) following blockage; and neurologic lesions leading to detrusor atony.
The most common causes of voiding disorders in cats include: obstruction with urethral plug, urolith, or blood clot; urethrospasm resulting in functional obstruction (usually post blockage); bladder dysfunction (detrusor atony) following blockage; and neurologic lesions leading to detrusor atony. Other causes include urethral stricture, neoplasia of the bladder neck or urethra, and extraluminal obstruction.
With lower urinary tract obstruction, the urinary bladder distends beyond its usual accommodating size. As intravesicular pressure increases to threshold levels, stretch receptors are activated and afferent information is relayed to higher centers. In an animal with an intact neurological system, these messages will trigger attempts to void. In an animal who cannot eliminate urine, the increased intravesicular pressure continues to build and is transmitted "upstream" to the ureter and ultimately to the kidney. Increased intratubular pressure opposes the forces driving glomerular filtration; ultimately RBF and GFR decline. Tubular concentrating ability and other tubular functions are also affected, leading to impaired sodium and water reabsorption, and impaired excretion of acids and potassium. Uremia, acidosis, hyperkalemia and volume depletion result. Inflammatory cells infiltrate urinary tract tissue and over time, mucosal damage or primary renal failure may occur. Acute complete urinary obstruction causes uremia within 24 to 48 hours and death within 60 – 75 hours. Following relief of obstruction, renal tubular impairment continues for some time, presumably to resolve the dramatic water and electrolyte aberrations that have developed. Renal tubular damage or overall nephron loss also contributes to the dramatic polyuria observed post-obstruction.
The diagnostic approach includes a problem-specific history and a physical examination that includes neurological evaluation (especially tail and anal tone, perineal sensation and hindlimb function). In addition, observation of voiding is important to determine how the animal postures, quality of urine stream, bladder expressibility, and whether the bladder is emptied fully after voiding. Observation of voiding can be difficult in cats in the hospital, so a detailed client history is imperative. A urinalysis is recommended to rule out iatrogenic or secondary UTI. Other components of a minimum data base (CBC, biochemical panel) can be selected based on the cat's general condition and history.
Imaging with survey radiography is recommended in all cases because urolithiasis is fairly common in cats. Ultrasonography can be more sensitive for the detection of small uroliths or soft tissue masses in the urinary tract. Small uroliths can move back and forth between the urinary bladder and urethra, making their detection more difficult. Excretory urography or contrast cystourethrography may be indicated to rule out or characterize anatomical abnormalities in young cats, to completely rule out anatomical obstruction, or following traumatic injuries or surgery. Additional imaging procedures may be necessary to rule out or characterize spinal lesions. Cystoscopy is increasingly applied in order to visualize the urinary bladder and urethra and may help confirm small uroliths or inflammatory/neoplastic lesions. In female cats, rigid cystoscopy allows good visualization of the urinary bladder and urethra and introduction of biopsy or other instruments. Small flexible or semi-flexible scopes are required in male cats, however, and offer limited visualization and instrumentation options.
Often, transurethral urinary catheterization is used to rule in/out mechanical obstruction, because catheterization will be difficult or "rough" at the obstructed site. If a catheter advances quite easily, the obstruction may be functional rather than anatomical. However, a flexible catheter may be passed retrograde through an incomplete intraluminal or extraluminal obstruction fairly easily (especially soft tissue masses) while spontaneous antegrade voiding remains difficult or impossible for the animal.
In rare cases, specialized urodynamic tests that evaluate lower urinary tract function are used to further characterize a micturition disorder. Urethral pressure profiles are occasionally used to document urethrospasm or to pinpoint focal obstruction. These tests are available at some referral teaching hospitals and are more commonly performed in cats in research settings. Urodynamic testing can clarify dysfunction in complex cases, congenital incontinence, or cases that fail to respond to treatment.
Manage fluid and electrolyte needs in acute complete obstruction (uremia, dehydration, hyperkalemia): Fluid therapy must be initiated to meet acute volume needs (body weight in kg x percent dehydration = L deficit, usually 200-400 mls in 80 – 100 ml boluses) and given over 2 – 3 hours. An ECG and electrolyte measurements should be performed to assess serum potassium. Sodium bicarbonate (if moderately hyperkalemic, acidotic) or calcium gluconate (if severely hyperkalemic or arrhythmic) can be administered for short term relief of hyperkalemia while the urinary obstruction is removed. Calcium gluconate is also appropriate for the cat with significant ionized hypocalcemia. Maintenance fluid and bicarbonate needs will depend on urine output and severity of acidosis.
Alleviate or bypass urethral obstruction immediately:
The prognosis for voiding disorders in cats depends on the initiating cause and the duration of dysfunction. Most cats with post-obstructive voiding difficulty will improve with time and proper management. Several days to a week may be necessary before normal voiding returns. With reversible neurologic lesions, return of urinary function usually accompanies recovery of other motor functions; however, pharmacologic treatments may be required during the recovery time period. Medical treatments are usually continued for several days after voiding function has returned, then tapered. Cats with chronic or irreversible neurologic lesions may not improve significantly with treatment, or may require lifelong management. Surgical salvage (urethrostomy) may be necessary in cases of permanent urethral damage.
Long term preventive care should be initiatied for cats following urethral obstruction. For cats with struvite crystalluria or mineralized plugs, struvite preventative dietary management can be used. Uroliths should be analyzed quantitatively (most are calcium oxalate) and preventive strategies applied according to mineral composition. Cats with non-crystalline, inflammatory plugs should be managed as for idiopathic cystitis. Owners should be advised of the high likelihood of recurrence for any of these etiologies.
Table. Key Pharmacologic Agents Used for Urinary Obstruction in Cats
Bartges JW (1996), "Pathophysiology of urethral obstruction," Vet Clin North Am Small Anim Pract 26:255-64.
Lane IF (2000), "Diagnosis and management of urinary retention," Vet Clin North Am Small Anim Pract 30:25-57.
Lees GE (1994) " Management of voiding disability following relief of urethral obstruction," in John August, ed, Consultations in Feline Internal Medicine, 2nd ed. Philadelphia, WB Saunders.
Olby N, (2006), "Neurogenic micturition disorders," in John August, ed, Consultations in Feline Internal Medicine, 5th ed, Philadelphia, Elsevier.
Fischer JR, Lane IF (2007). Incontinene and urine retention. In Elliott and Grauer, eds. BSAVA Manual of Canine and Feline Nephrology and Urology, 2nd ed.
Drobatz, K. (2008) Emergency management of the critically ill cat with urethral obstruction. In Bonagura and Twedt, eds, Kirk's Current Veterinary Therapy XIV.
Achar et al (2003). Amitriptyline eliminated calculi through urinary tract smooth muscle relaxation. Kidney Int 64:1356.
Podcast CE: A Surgeon’s Perspective on Current Trends for the Management of Osteoarthritis, Part 1
May 17th 2024David L. Dycus, DVM, MS, CCRP, DACVS joins Adam Christman, DVM, MBA, to discuss a proactive approach to the diagnosis of osteoarthritis and the best tools for general practice.
Listen