The nuts and bolts of blood pressure measurement (Proceedings)

Article

Blood pressure measurement is often not a routine part of small animal practice.

Why Measure Blood Pressure?

Blood pressure measurement is often not a routine part of small animal practice. This partially has to do with the equipment available to measure blood pressure as well as our patients (they tend not to hold still like we have to). This does not however change the fact that measuring blood pressure is

a) good medicine

b) a diagnostic test with considerable owner acceptance

c) a way to generate income with good medicine

Blood pressure can be determined through direct or indirect means. The direct method requires catheterization of a peripheral artery, generally a procedure reserved for monitoring of critical patients. Indirect means of blood pressure determination are more practical for day to day use. The indirect methods are non-invasive and cause little discomfort. The increasing availability of simple and relatively inexpensive means to indirectly measure blood pressure has lead to increased clinical application of this diagnostic tool.

Doppler

Doppler ultrasonic blood pressure machines have a transmitting and receiving transducer. The ultrasound waves generated by the transducer are used to detect motion of the arterial wall or the blood cells themselves. If an object is moving a frequency change occurs (Doppler effect) with the ultrasound waves, making the reflected sound beam go from ultrasonic range to audible range. This reflected signal is amplified by the Doppler machine. An inflatable cuff with an aneroid pressure gauge is usually also needed. The cuff applies pressure to a peripheral artery and the pressure values are displayed by the gauge. The cuff is inflated to levels greater than systolic pressure. This occludes the artery and wall motion stops so that a signal is not received. The cuff is slowly deflated to a level below systolic pressure, which then means that the pulses are heard again. This method can be used in practice. There are a variety of downsides to this method. The method is operator dependent and widely varying numbers can be obtained by different people. The noise of the unit can contribute to stress in the animal as does shaving to improve probe contact. The set up time is relatively long making this method poorly adaptable to routine blood pressure measurement. Generally two skilled people are needed, one to restrain the pet, the other to obtain the reading. One of the most significant downsides to this technology is the inability to routinely and accurately determine diastolic blood pressure.

Oscillometric

Oscillometric blood pressure devices measure oscillations within a cuff bladder. The pulse wave traveling through an artery causes these oscillations. Several commercial devices are available. The machines automatically inflate the cuff and deflate it slowly. Pressures above systolic pressure are initially used to occlude the artery and stop wall motion. Once deflated to systolic pressure, oscillations begin. Though relatively reliable in dogs, to date this technique has been very difficult to use in cats. Since there is no hunt for an artery as with Doppler, in many cases getting a reading is more rapid with oscillometric. Each individual reading takes longer in that the devices automatically inflate and then deflate slowly. This is actually an advantage, because this means that blood pressure is sampled over a longer period of time. As a result, a more accurate reflection of blood pressure can be determined.

High Definition Oscillometry (HDO)

HDO is also based on oscillometry, however that is similar to saying that a model T car is the same as a Lexus. HDO represents a generational leap in oscillometry. The processor is considerably more powerful allowing real time analysis of the oscillometric curve and exact control of the valves that determine inflation and deflation. This makes HDO accurate over a wider range of pressures (from 300 to 25 mmHg). It is also possible to visualize the oscillations as they are occurring using a computer. Seeing the curve allows the veterinarian to make important decisions as to whether the readings are accurate. With HDO it is possible to obtain blood pressure readings off the tail, even in awake ferrets. It is even possible to send the HDO unit home with the owner and most owners can obtain readings that are free from in hospital stress. This unit allows blood pressure measurement to truly become a routine and relatively easy diagnostic test in small animal patients.

Technique

It is important that the measurements be taken in a manner that minimizes apprehension or movement in a conscious patient. In addition, it is vital to take readings in the same manner each time, this way readings are more comparable. This means that a protocol should be established and followed in all patients, when this protocol is deviated from it should be noted in the record. Deviations could be which limb was used, which cuff or machine was used, etc. The readings should be taken by someone that is calm and there should be adequate time allowed to carry the procedure out. Measurements should be taken in a quiet area with minimal distractions. Often if the owner is present, the animal will be more relaxed. Letting the patient acclimate to the room is also a good idea. Invasive examinations such as taking blood or rectal body temperature should wait until after blood pressure has been measured.

One of the most vital factors in obtaining an accurate blood pressure determination is selection of the proper cuff. Cuff width has a tremendous influence on values determined. Ideally, cuff width should be approximately 40% of limb circumference at the site of cuff placement. With Doppler it usually is ideal to shave the area where the transducer is to be placed and then use coupling gel to improve signal transmittance. This is not necessary with oscillometric devices. Blood pressure is subject to variations with each heart beat. This necessitates that repeated measurements be taken to obtain valid results. It is recommended that at least 5 blood pressure measurements be obtained over 5 minutes or more to determine average values.

Sources of Error

Many factors can adversely affect blood pressure measurement. The autonomic nervous system can alter blood pressure, especially in response to stress. This is termed white coat hypertension and occurs commonly in humans as well. Movement in limbs will cause false values. Cuff width will influence results if it deviates too much from the ideal of 40% of limb circumference. A cuff that is too wide will result in lower readings and a cuff that is not wide enough will result in higher readings. Pronounced arrhythmias and slow heart rates can potentially also cause erroneous results. When using Doppler it is vital to have discipline when obtaining values. The tendency is to get 5 or 6 readings as fast as possible. This generally does not reflect true blood pressure. With Doppler you have to look at your watch and get measurements over 5 minutes. The later readings will generally be closer to true blood pressure since the animal will have had time to accommodate to the procedure.

Clinical Implications

Both hypotension (low blood pressure) and hypertension (high blood pressure) can be encountered clinically. Hypotension is commonly associated with shock, sepsis or the administration of various medications (most common side effect of anesthesia). Prolonged hypotension leads to poor perfusion of vital organs. Certain drugs used in the treatment of cardiac disorders are potent vasodilators (hydralazine, nitroprusside) and can reduce peripheral resistance considerably. This results in a lowering of blood pressure, occasionally to unacceptably low levels.

Hypertension tends to be a disease with few overt symptoms until severe damage has been done. Hypertension can cause undue stress on the heart and hypertension should be a differential in older cats that develop a cardiac murmur. One of the few obvious clinical signs of elevated blood pressure is hypertensive retinopathy. Initially the retinal vessels become and tortuous. As hypertension continues retinal edema, retinal hemorrhages, retinal detachment and intraocular hemorrhage can occur. In very severe cases, damage can also be done to the CNS.

Risk categories

Hypertension is classified as idiopathic (primary, no underlying cause found) or secondary (disease condition found that is commonly associated with hypertension). Diseases known to cause secondary hypertension include Cushing's disease, hyperthyroidism, diabetes mellitus and renal disease (both chronic renal failure and glomerulopathies). In renal disease hypertension leads to further functional damage to the kidney.

Recent Videos
© 2024 MJH Life Sciences

All rights reserved.